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Abstract Irrigation plays an important role in

increasing food production in China. The impact of

irrigation on crop yield (Y), crop water productivity

(CWP), and production has not been quantified sys-

tematically across regions covering the whole country.

In this study, a GIS-based EPIC model (GEPIC) was

applied to simulate Y and CWP for winter wheat

(Triticum aestivum L.) in China at a grid resolution of

5 arc-minutes and to analyze the impacts of reducing

irrigation water on wheat production. The findings

show that irrigation is especially important in improv-

ing CWP of winter wheat in the North China Plain

(NCP), the ‘‘bread basket’’ of China. On average, the

provincial aggregate CWP was 56% higher under the

irrigated than that under the rainfed conditions. The

intensification of water stress and the associated in-

crease in environmental problems in much of the NCP

require critical thoughts about reducing water alloca-

tion for irrigated winter wheat. Two scenarios for

irrigation reduction in the NCP provinces are pre-

sented: reducing irrigation depth (S1), and replacing

irrigated winter wheat by rainfed winter wheat (S2).

The simulation results show that S1 and S2 have similar

effects on wheat production when the reduction in

irrigation water supply is below 20% of the current

level. Above this percentage, S2 appears to be a better

scenario since it leads to less reduction in wheat pro-

duction with the same amount of water saving.

Introduction

Agriculture is the largest water user in China,

accounting for nearly 70% of total water withdrawals

(MWR 2005). Irrigation plays a vital role in increasing

crop yields (Huang et al. 2002). Accounting for 40% of

China’s total arable land, irrigated land produces 75%

of China’s total food grain (Jin and Young 2001).

Irrigation together with the application of agro-chem-

icals increases grain production, and helps improve

farmers’ incomes (Jin and Young 2001). Water short-

age could greatly affect the total domestic grain pro-

duction. As the largest wheat producer and consumer

in the world, China’s domestic wheat production could

significantly influence world food trade (Lohmar 2004;

Ahmadi-Esfahani and Jensen 1994). The reduction in

cereal production due to severe drought resulted in

20 million tons of food imports in 1995, accounting for

10% of the total world cereal exports (FAO 2005).

The average per capita annual water resources

availability in China is slightly above 2,000 m3 (MWR

2005). The spatial distribution is highly uneven. In the

northern and western parts of China, the water re-

sources availability is below the national average,

whereas in the South and the East it is above. In the
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North China Plain, where winter wheat is concen-

trated, it is about 500 m3 per capita (MWR 2005).

Given the limitation in water resources and the con-

tinuous increase in food demand, it is necessary to

improve crop production per unit of water use. Defined

as the ratio of crop yield to actual evapotranspiration

(ET), crop water productivity (CWP) combines two

important and interrelated processes in agricultural

systems: crop yield and water consumption. It is an

important indicator of water use efficiency. There have

been some studies on CWP in different locations in

China (Zhang et al. 1999; Jin et al. 1999; McVicar et al.

2002; Huang et al. 2004). However, a systematic

assessment of CWP in different geographical locations

covering the whole country has not been conducted so

far. This is partly due to the limitations of the tradi-

tional methods for estimating CWP on a large scale.

Field experiments and crop growth models are two

commonly used methods to determine crop yield, ET,

and CWP. The main shortcomings of field experiments

are that they are time consuming, costly and cannot be

easily extrapolated to other seasons and geographic

locations (Liu et al. 2007). As for crop growth models,

most of them are preferentially used for point or site

specific applications. The collection and editing of the

input data for crop growth models for a large number

of locations are generally complex and difficult.

The integration of the crop growth model with GIS

provides an effective way to estimate CWP with rel-

atively high spatial resolution and on a large geo-

graphical scale. We developed a GIS based EPIC

model, GEPIC, to simulate crop yield, ET, and CWP

simultaneously. Combining the advantages of GIS and

EPIC, the GEPIC model can be used for studies on

local, national and global scales. The model has been

successfully applied in estimating crop yield and CWP

for wheat (Triticum aestivum L.) on a global scale

with a spatial resolution of 0.5 arc-degree (Liu et al.

2007).

In this paper, we applied the GEPIC model to

study the crop-water relationship for winter wheat in

China. Wheat is selected because of its importance for

China and its high dependence on irrigation. Wheat in

China is the second largest crop after rice in terms of

harvested area and production (FAO 2005) and uses

more than 70% of the total irrigation water in the

North China Plain (NCP) (Li et al. 2005). Wheat

imports accounted for nearly 40% of the total cereal

imports in the period 1995–1999 (FAO 2005). Of the

total wheat production, winter wheat accounts for 85–

90% of both planting area and production in China

(SBB 2004).

Materials and methods

The GEPIC model

The GEPIC model is a GIS-based EPIC model de-

signed to simulate the spatial and temporal dynamics

of the major processes of the soil-crop-atmosphere-

management system. It takes into account factors

relating to weather, hydrology, nutrient cycling, till-

age, plant environmental control and agronomics. In

EPIC (version 3060), the crop growth sub-model

simulates potential crop growth, actual crop growth,

and crop yield in a daily time step. Potential increase

in biomass for a day is estimated using Monteith’s

approach (Monteith 1977). The daily potential bio-

mass is adjusted for stress from five factors (water,

temperature, nitrogen, phosphorus and aeration) in

proportion to the extent of the most severe stress

during that day (Williams et al. 1989). Crop yield is

estimated by multiplying the above-ground biomass

at maturity with a water stress adjusted harvest index

for the particular crop (Williams et al. 1989). The

EPIC model offers five methods for estimating po-

tential evapotranspiration: Hargreaves and Samani

(1985), Penman (1948), Priestley and Taylor (1972),

Penman and Monteith (1965), and Baier and Rob-

ertson (1965). When wind speed, relative humidity,

and solar radiation data are not available, the

Hargreaves or Priestley-Taylor methods provide op-

tions that give realistic results in most cases. In this

study, the Hargreaves method is employed to esti-

mate potential evapotranspiration. Actual evapo-

transpiration is calculated by an approach similar to

that of Ritchie (1972). The detailed description about

the EPIC model can be found in Williams et al.

(1989).

In this paper, crop water productivity is defined with

Eq. 1.

CWP ¼ Y=ET ð1Þ

where CWP is crop water productivity in kg m–3, Y is

the seasonal crop fresh yield in kg ha–1, and ET is

seasonal crop water consumption in terms of evapo-

transpiration in m3 ha–1. In this study, a fresh yield is

calculated using a moisture content of 14% as sug-

gested by Bessembinder et al. (2005).

In order to specify the contribution of irrigation to

CWP, we further define RCWP and ICWP in Eqs. 2

and 3 for irrigated areas:

RCWP ¼ Yr

ETr
ð2Þ
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ICWP ¼ Yi � Yr

ETi � ETr
ð3Þ

where RCWP and ICWP are rainfed and irrigation

crop water productivity, respectively, on irrigated land.

Yi is the yield at irrigation level i. Yr is the yield con-

tributed by rainfall on irrigated land. ETi and ETr

represent the ET with irrigation level i and without

irrigation, respectively.

The earlier version of the GEPIC model simulates

crop yield and water dynamics grid by grid. The GE-

PIC model first transfers raster input data into EPIC

required input files. The model simulates crop yield,

ET and CWP for each grid cell. The output files are

used to create output maps [see details about the

GEPIC model in Liu et al. (2007)]. In order to reduce

simulation numbers, we modified the GEPIC model in

this study by introducing a concept of a homogenous

simulation unit. A homogenous simulation unit is a

group of grids containing a unique combination of soil,

land use and climate conditions. By introducing this

concept, grids with the same homogenous unit are

simulated simultaneously.

Input data

The spatial and temporal resolutions of the data sets

used in this paper are listed in Table 1.

The statistical data for winter wheat were obtained

from the CHINAGRO project (Fischer 2005), which is

a project on ‘‘Policy decision for sustainable adaptation

of China’s agriculture to globalization’’ supported by

European Union (INCO-DEV ICA-2000-20039), the

Chinese and Dutch Governments, and the IIASA

member countries. The CHINAGRO project collected

statistical data for crop yield, production, sown area

and total fertilizer application for rainfed and irrigated

winter wheat separately. Based on the statistics, rain-

fed winter wheat existed in 1,094 counties, and irri-

gated winter wheat existed in 1,569 counties. In most of

the counties, both rainfed and irrigated winter wheat

are planted. Per hectare fertilizer application rate was

calculated by dividing total fertilizer application by

total sown area of the respective winter wheat in each

county. Fertilizer was separated into nitrogenous,

phosphate, potassium and compound fertilizer. The

ratios of these four types of fertilizer were only avail-

able at the provincial level (SSB 2001). In this study,

we assume that the ratios are homogenous for all the

counties within a province.

The digital elevation model (DEM) data were ob-

tained from the 1 km resolution (30 arc seconds) dig-

ital elevation model GTOPO30 of the US Geological

Survey (USGS) (EROS Data Center 1998). Terrain

slopes were obtained from the 1 km resolution (30 arc-

seconds) HYDRO1K digital raster slope map, which

defines the maximum change in the elevations between

each cell and its eight neighbors (United States Geo-

logical Survey 2000).

The daily maximum and minimum temperatures and

precipitation data for the period 1977–1993 were

derived from the Global Daily Climatology Network

(GDCN) (Version 1.0) (Gleason et al. 2002). Daily

climate data from 1994 to 2004 were downloaded

from the website of the National Climate Data

Center (NCDC) (http://www.ncdc.noaa.gov). Detailed

description on the climate data source is given by Liu

et al. (2007).

The Digital Soil Map of the World (DSMW)

(FAO 1990) provides basic soil parameters of depth,

Table 1 Datasets used in this paper

Datasets Spatial reference Source

1. Statistical rain-fed crop yield County averages Fischer (2005)
2. Statistical irrigated crop yield County averages Fischer (2005)
3. Statistical rain-fed crop sown area County averages Fischer (2005)
4. Statistical irrigated crop sown area County averages Fischer (2005)
5. Daily climate data (precipitation,

minimum and maximum temperature)
534 stations Data for 1997–1993 from Gleason et al. (2002);

Data for 1994–2004 from National Climate
Data Center

6. Soil data–depth, texture 5 arc-minutes FAO (1990)
7. Soil data–pH, organic carbon 5 arc-minutes Batjes (1995)
8. Fertilizer application County averages Fischer (2005)
9. Ratio of N, P, K and compond fertilizer

to total fertilizer
Provincial averages China Statistical Yearbook (2001)

10. Digital elevation model (DEM) 30 arc-seconds EROS Data Center (1998)
11. Terrain slope 30 arc-seconds USGS (2000)
12. Cultivated land map 5 arc-minutes Fischer (2005)
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percentage of sand, silt and clay. It is derived from

the FAO-UNESCO Soil Map of the World (SMW)

at an original scale of 1:5 million, which is one of the

most comprehensive soil maps so far with global

coverage (Nachtergaele 1996). Other soil parameters

are available from ISRIC-WISE international soil

profile data set (Batjes 1995). These data sets include

the parameters such as pH, organic carbon content,

etc. They are linked to the digital soil map of the

world.

In this study, 5 arc-minutes were taken as the spatial

resolution for simulation (approximately 8.3 km near

the equator). The DEM and terrain slope maps were

transferred into 5 arc-minutes maps using the average

values from the finer 30 arc-seconds maps. It was as-

sumed that crops are only harvested in the grid-cells

where cultivated land exists. The cultivated land map

was obtained from the CHINAGRO datasets (Fischer

2005).

The default crop parameters for wheat in EPIC

were used in the simulation. In China, the crop-spe-

cific parameters used in the EPIC model have only

been calibrated for a few locations based on experi-

mental studies, e.g. Ansai in Shaanxi province (Lu

2000). Calibration of crop parameters for all the

provinces (or counties) has not been conducted.

Nevertheless, an earlier application of GEPIC by the

authors of this paper has shown that the simulated

crop yield and CWP using EPIC default parameters

agreed well with the measured crop yield and CWP

for wheat in many locations in China (Liu et al. 2007).

Crop calendars in different regions were obtained

from the CHINAGRO datasets (Fischer 2005). The

information of sowing time and maturity time in each

county is included.

There are two options for irrigation and fertilization

in the EPIC model: user specified and automatic. The

automatic option allows the model to decide when and

how much to irrigate or fertilize based on input triggers

(water and N plant stress levels), maximum annual

applications, and minimum time interval between

applications. We selected the automatic irrigation and

fertilization option in this study, because of the diffi-

culty in obtaining the irrigation and fertilization sche-

dule data in different regions. The automatic option

allows ‘optimal’ timing of water and fertilizer applica-

tion, and assumes that local farmers have perfect

knowledge in water and fertilizer management. This

option may somewhat results in higher simulated yields

and CWP than those in reality. But before the avail-

ability of more detailed management data like the

timing of irrigation and fertilization, this option will

remain the most practical assumption in applying a

crop growth model.

Regional delimitation

The research area in this study includes 31 provinces,

municipalities and autonomous regions (for conve-

nience, they are all called ‘‘provinces’’ here) in main-

land China. The country is divided into five main

regions: the North China Plain, Northeast, Northwest,

Southwest, and Southeast (Fig. 1). Each of the regions

consists of several provinces. There are different re-

gional delimitations in the literature based on various

purposes (Shi and Lu 2001). The delimitation in this

study takes two major factors into account: the geo-

graphical location of provinces (which is closely related

to the climate conditions), and the importance of

winter wheat production. For example, the North

Fig. 1 Regional delimitation

24 Irrig Sci (2007) 26:21–33

123



China Plain is the most important region for winter

wheat production. All the provinces in this plain are

grouped into one region.

The North China Plain (NCP) accounts for about

50% of the national wheat production (Li et al. 2005).

It produces over 40% of rainfed winter wheat, and

nearly 80% of irrigated winter wheat of the country

(Table 2). The region consists of the provinces of

Hebei, Shandong, Henan, Anhui, Jiangsu, and

municipalities of Beijing and Tianjin. The soil of the

NCP originates from sediments deposited by the

Yellow River and is the largest alluvial plain of

eastern Asia. The plain is generally a flat low land,

with elevations mostly below 50 m above sea level,

and the terrain slopes mainly smaller than 5%. The

fertile soil, the flat land and the climate are favourable

for growing winter wheat. Next to the NCP provinces,

the Southwest and Northwest provinces are also

important for winter wheat production (Table 2). The

Southeast provinces account for a small percentage,

while the Northeast provinces are marginal in winter

wheat production.

Validation of the model

The GEPIC model was first applied to simulate crop

yield for 1,094 counties where rainfed winter wheat

existed. The performance of the GEPIC model was

tested by comparing the aggregated average simulated

and statistical yields of rainfed winter wheat in 1,079

counties (Fig. 2). A total of 15 counties were dropped

in the comparison because the simulation results sug-

gested that they were not suitable for rainfed winter

wheat. The dashed line is the 1:1 line and the black

solid line is the linear trend line. The trend line is close

to the 1:1 line. The simulated yields and the statistical

yields are quite comparable, as indicated by a highly

significant F-test (the P value is higher than 99%) and

high r2 value (0.73). The slope is not significantly dif-

ferent from 1, while the intercept is not significantly

different from 0. The difference between the simulated

and statistical provincial average yields is generally

within 10% of the statistical averages (Table 3). The

statistical tests indicate good performance of the GE-

PIC model in simulating crop yields for rainfed winter

wheat.

Results and discussion

Irrigation depth and the role of irrigation for winter

wheat yield in different regions

Information on the amount of irrigation water applied

(or irrigation depth) is important for quantifying the

contribution of irrigation to yield. It is also the basis for

studying the impacts of changes in irrigation on the

regional and national food production. Spatial maps of

annual irrigation depth have not been available on the

national scale with high resolution for winter wheat

prior to this study. The GEPIC model is used to sim-

ulate the annual irrigation depth for irrigated winter

wheat.

For each homogenous simulation unit, the first

simulation was conducted with an assumption of suf-

ficient irrigation, holding other factors unchanged.

GEPIC determined the annual irrigation depth (I0)

with which no water stress occurred during the growth

period. Yield was simulated under the sufficient irri-

gation condition. If the ratio of the simulated yield to

the statistical yield fell in a practical range (90–110%),

it was assumed that the annual irrigation depth equals

I0. Otherwise, the annual irrigation depth was adjusted

Table 2 The percentage of winter wheat sown area/production
to national total in five regions in 2000 (Fischer 2005)

Regions Rain-fed
winter
wheat
area (%)

Irrigated
winter
wheat
area (%)

Rain-fed
winter
wheat
production
(%)

Irrigated
winter wheat
production
(%)

NCP provinces 32 71 43 79
Northwest

provinces
29 13 17 9

Southwest
provinces

31 11 31 8

Southeast
provinces

8 5 9 4

Northeast
provinces

0 0 0 0

China 100 100 100 100

Fig. 2 Comparison between simulated and statistical rainfed
winter wheat yields at county level
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by a step length (10 mm), and the crop yield was

simulated with the new annual irrigation depth. This

process continued until the ratio fell in the practical

range. When the ratio was higher than 110%, which

was the dominant case, the annual irrigation depth was

decreased stepwise. In case the ratio was smaller than

90%, the irrigation depth was increased stepwise. All

the grids were simulated with this procedure. The na-

tional map indicating the simulated annual irrigation

depth is shown in Fig. 3.

In Hebei, Beijing, Tianjin, Shandong and Henan

provinces, the five relatively dry provinces in the NCP

provinces, annual precipitation is variable, ranging

from 300 to 1,000 mm with an average of 480 mm

(Zhang and You 1996). A majority of the rainfall (70%

of annual precipitation) is concentrated in the period

from July to September (Wang et al. 2000). Rainfall

during the winter wheat growing season ranges from

100 to 180 mm, which can only meet approximately

25–40% of crop water requirements (defined as the

potential crop water consumption without any water

stress) over the wheat growing season (October–June)

(Li et al. 2005). The yield of rainfed winter wheat was

generally lower than 2,500 kg ha–1, and it varied

greatly among provinces, ranging from less than

1,000 kg ha–1 in Hebei to 2,565 kg ha–1 in Henan

(Table 3). In these five provinces, supplemental irri-

gation is a key to guarantee high and stable crop yields.

For example, in Hebei province, annual irrigation

depth was between 150 and 300 mm (Fig. 3), and yield

could be increased by a factor of four. On provincial

average, irrigation depth was 28–74% of total ET for

irrigated winter wheat in these five provinces

(Table 3). The yields were increased by 76–396% un-

der irrigated conditions compared to that under rainfed

conditions.

Table 3 Provincial averages of crop yield, ET and CWP

Region/
province

Rain-fed winter wheat Irrigated winter wheat

Area
(ha)

Ysta

(kg ha–1)
Ysim

(kg ha–1)
Diffa

(%)
ET
(mm)

CWP
(kg m–3)

Area
(ha)

Ysta

(kg ha–1)
Ysim

(kg ha–1)
ET
(mm)

CWP
(kg m–3)

Irrigation
(mm)

NCP
provinces

1897833 2585 2430 –6.0 316 0.77 15076880 4429 4512 377 1.20 133

Beijing 676 1336 1366 2.3 208 0.66 143986 4548 4682 346 1.35 255
Tianjin 16 1240 1161 –6.4 244 0.48 135562 3391 3300 300 1.10 184
Hebei 60739 956 1016 6.3 157 0.65 2872018 4737 4711 331 1.42 216
Henan 815073 2565 2318 –9.6 278 0.83 4607538 4511 4507 371 1.21 104
Shandong 303357 2252 2094 –7.0 254 0.83 3811299 4682 4816 344 1.40 133
Anhui 504124 2680 2568 –4.2 412 0.62 1730729 3385 3505 466 0.75 92
Jiangsu 213848 3372 3418 1.4 372 0.92 1775748 4260 4615 459 1.01 97
Northwest

provinces
1741907 1145 1220 6.6 266 0.46 2644380 2236 2299 378 0.61 157

Gansu 687681 966 1116 15.6 246 0.45 233863 1563 1579 304 0.52 189
Shaanxi 697304 1225 1303 6.4 300 0.43 1252027 2832 2954 425 0.70 137
Ningxia 38050 1099 987 –10.2 226 0.44 17237 1974 1859 358 0.52 180
Xinjiang 499920 4135 3930 360 1.09 395
Shanxi 318872 1359 1291 –5.0 241 0.54 641333 3066 3085 329 0.94 103
Southwest

provinces
1799547 1951 2006 2.9 388 0.52 2385361 2804 2844 432 0.66 108

Chongqing 338823 2117 2126 0.4 375 0.57 242007 2528 2624 425 0.62 140
Guangxi 4790 892 973 9.1 258 0.38 19930 1281 1319 285 0.46 140
Guizhou 544128 1422 1524 7.2 399 0.38 204106 1666 1925 432 0.45 84
Sichuan 641655 2571 2685 4.4 420 0.64 1297701 3483 3561 455 0.78 91
Yunnan 270092 1353 1234 –8.8 309 0.40 620688 1916 1781 391 0.46 138
Xizang 59 1436 1559 8.6 280 0.56 929 3372 3365 427 0.79 181
Southeast

provinces
445628 2206 2212 0.3 393 0.56 1064864 2710 2807 455 0.62 101

Shanghai 1051 2995 2812 –6.1 290 0.97 60742 3435 3839 378 1.02 60
Zhejiang 24969 2296 2254 –1.8 416 0.54 168157 2936 3018 487 0.62 110
Jiangxi 11672 1426 1548 8.6 378 0.41 41202 1544 1567 438 0.36 14
Hubei 378791 2260 2273 0.6 394 0.58 650883 2792 2882 467 0.62 122
Hunan 25033 1711 1620 –5.3 376 0.43 98205 1925 1997 405 0.49 38
Fujian 2270 1377 1574 14.3 369 0.43 32024 2432 2489 422 0.59 0
Guangdong 1842 2048 1861 –9.1 303 0.62 13651 2607 2347 340 0.69 0

a Diff is defined as (Ysim – Ysta)/Ysta · 100%
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In Anhui and Jiangsu, the two relatively wet prov-

inces in the NCP provinces, annual precipitation was

higher than 800 mm (Leemans and Cramer 1991). The

high precipitation provided favourable moisture con-

ditions for rainfed agriculture. However, supplemental

irrigation during dry spells could further improve crop

yield of winter wheat. Annual irrigation depth was

generally less than 100 mm in these two provinces

(Fig. 3). Irrigation depth was only approximately 20%

of ET, and the yields of irrigated winter wheat were

about 26% higher than those of the rainfed winter

wheat (Table 3).

In the Northwest provinces, high evaporation and

low precipitation make irrigation vital for winter wheat

production. In Xinjiang province, rainfed winter wheat

production is not possible due to the low annual

average precipitation of 145 mm (Shi and Lu 2001).

However, its sufficient sunlight and radiation resources

give the province a potential for high-yielding winter

wheat when irrigation is applied. The current winter

wheat yield level of over 4,000 kg ha–1 was achieved

with full irrigation (>400 mm) (Fig. 3). Except for

Xinjiang, irrigation was about 31–62% of ET in other

Northwest provinces, and the yields were increased by

62–126% under irrigated conditions compared to those

under rainfed conditions (Table 3).

In most of the Southeast provinces, precipitation

was higher than 1,200 mm. Precipitation could meet

the water requirement for winter wheat during its

growing period. The simulation shows that there was

no irrigation applied. However, based on the statistical

data, irrigated winter wheat still existed in some places.

This is because winter wheat was generally planted in

the winter period in the paddy ‘‘irrigated’’ field, where

rice was planted during summer. Supplemental irriga-

tion might be applied at the start of the wheat growth

cycle in autumn to give the young seedlings good

conditions for germinating and emergence (personal

communication, H. van Velthuizen). Because irrigation

was not applied during crop growth period, it is not

surprising that the simulated annual irrigation depth

was zero. On provincial average, irrigation was gener-

ally less than 25% of ET. The difference was small

between irrigated and rainfed winter wheat yields.

Winter wheat yields under irrigated conditions were

only increased by 8–28% compared to those under

rainfed conditions. Overall, in the Southeast region,

water is not a main constraint. Instead, the warm cli-

mate conditions were not suitable for winter wheat,

leading to relatively low yield, even with irrigation.

In the Southwest provinces, precipitation ranged

from 600 to 1,800 mm in the major winter wheat pro-

ducing areas. Irrigation was 19–49% of ET on pro-

vincial average (Table 3). Supplemental irrigation was

mostly applied in Sichuan, Chongqing and Yunnan.

The yields of irrigated winter wheat were not sub-

stantially higher than that of rainfed winter wheat, with

amounts ranging from 17 to 44% at the provincial level

(Table 3). In most part of this region, constraints due

to soil depth, soil fertility and terrain slope were severe

for crop growth (Fischer et al. 2002).

CWP under rainfed and irrigated conditions

CWP was calculated based on the simulated yield and

ET for rainfed and irrigated winter wheat, respectively.

Fig. 3 Map of simulated
irrigation depth for winter
wheat (2000)
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The results showed that under rainfed conditions,

winter wheat had CWP values generally in the range of

0.20–1.20 kg m–3. Relatively higher CWP values were

found in the high-yielding rainfed winter wheat belt,

mainly the provinces in the NCP, and Hubei, Chon-

gqing and Sichuan provinces (Fig. 4). This belt had the

most favourable climate conditions for rainfed winter

wheat in China (Fischer et al. 2002). In Jiangsu prov-

ince, the average annual precipitation varied from 850

to 1,200 mm in the major wheat producing areas

(Leemans and Cramer 1991). High precipitation was

an important reason for the high CWP values under

rainfed conditions.

North of the high-yielding rainfed winter wheat belt,

the low precipitation and low temperature seriously

limit winter wheat production. South of this belt, the

high temperature poses constraints to winter wheat

production. The high temperature together with plen-

tiful precipitation leads to high evapotranspiration,

while yield is low. The lowest values of CWP were seen

in Guangxi and Guizhou provinces where soil depth,

soil fertility and terrain slope were not suitable for

winter wheat (Fig. 4, Table 3).

The effects of supplemental irrigation on CWP

varied significantly among regions (Figs. 4, 5). The

NCP provinces stood out to be the region with the

most significant improvement in CWP under irrigated

conditions. On average, CWP under irrigated condi-

tions was appropriately 56% higher than that under

rainfed conditions. The Northwest provinces and the

Southwest provinces could improve CWP by 33 and

27%, respectively. In the Southeast provinces CWP for

irrigated winter wheat was only 10% higher on average

than that for rainfed winter wheat. These provinces

generally received high precipitation during the winter

wheat growing period. The irrigation did not increase

crop yield much, but the actual ET increased sub-

stantially (Table 3).

The role of supplemental irrigation is further

specified in Fig. 6. In the regions with annual pre-

cipitation less than 600 mm, e.g. in Xinjiang, winter

wheat generally could not achieve economic yields

with rainfall alone. Therefore full irrigation was

required. Rainfed winter wheat was generally feasible

when annual precipitation was higher than 600 mm

(Fig. 6). However, supplemental irrigation can

increase crop yield. ICWP was mostly high between

600 and 1,000 mm isohyets (Fig. 6). Large parts of the

NCP provinces were located between the isohyets,

and had ICWP higher than 1 kg m–3. The significant

increase in yield with less significant increase in ET

resulted in high ICWP values. In the regions receiving

more than 1,000 mm annual precipitation, ICWP was

generally small. Most parts of Southeast and South-

west provinces had ICWP values below 0.5 kg m–3. In

these provinces, an increase in irrigation may not

significantly improve crop yield, but may lead to much

higher evapotranspiration.

In the precipitation-rich Southwest and Southeast

provinces, irrigated winter wheat is planted in some

areas despite the small increase in crop yield. This is

because water is not a scarce resource in these prov-

inces. The opportunity cost of irrigation is relatively

low. As long as irrigation can increase yield and

Fig. 4 Simulated crop water
productivity for rainfed
winter wheat in 2000
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income, farmers will irrigate, regardless of whether

irrigation could result in high CWP. In contrast, in

water-scarce provinces, e.g. those in NCP and North-

west regions, competitive uses exist among agriculture

and other sectors. The opportunity cost of irrigation is

high. Efficient allocation of the precious water among

different sectors is of importance for both regional

economic development and food production. Achiev-

ing high values of CWP, especially high ICWP, has to

be considered an important objective in agricultural

water management.

Comparison of CWP in this study with others

reported

The simulated CWP values in this study are compared

with those reported in the literature (Table 4). To ex-

clude extreme values, the CWP range in this study is

determined by taking the 5 and 95 percentiles of the

cumulative frequency distribution.

In this study, CWP for irrigated winter wheat was

between 0.40 and 1.51 kg m–3 in the NCP provinces

(Table 4). The CWP values from Zhu et al. (1994) fell

Fig. 5 Simulated crop water
productivity for irrigated
winter wheat in 2000

Fig. 6 Simulated irrigation
crop water productivity
(ICWP) for winter wheat in
2000
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in the same range. Zhang et al. (1999) gave a similar

upper limit, 1.40, while Jin et al. (1999) reported one of

2.30. Compared to the data reported, the lower limit of

CWP in our study is relatively small. The reason is that

our study covers the entire NCP provinces, whereas

most others dealt with some specific sites.

In Hebei province, an important winter wheat pro-

ducing province in China, the simulated upper and

lower values of CWP under irrigated conditions were

0.68 and 1.63, respectively (Table 4). These are both in

the range reported by McVicar et al. (2002) for the

same province. The simulated CWP of rainfed winter

wheat ranged between 0.20 and 0.87 kg m–3. The re-

sults compare well with Mo et al. (2005) for the Hebei

province (Table 4).

Impacts of irrigation reduction on winter wheat

production and policy implications

Irrigated winter wheat production is the largest water

user in the NCP (Shi and Lu 2001; Xu et al. 2005). The

excessive water consumption has led to a series of

environmental problems including a drop in the re-

gional groundwater table at an alarming rate (Liu and

He 1996; Wang et al. 2001). For example, Shijiazhu-

ang, the capital city of Hebei province, has experienced

an annual decline in the shallow groundwater table by

1.0–1.2 m since the 1990s (Xu et al. 2005). With the

rapid economic development in the region, the water

demand by industries and domestic users will contin-

uously put pressure on irrigation water supply. The

serious environmental problems caused by excessive

water withdrawal have called for urgent measures to

halt the trend. Given the fact that irrigated winter

wheat is the major water user of the region, reducing

the irrigation for winter wheat would be an option to

alleviate water stress (Xu et al. 2005; Shi and Lu 2001).

With the help of the GEPIC model the impacts of

alternative irrigation reductions on winter wheat pro-

duction are quantified. Two scenarios were proposed

to assess the impacts of changes in irrigation water

supply for winter wheat in the NCP provinces on re-

gional and national wheat production.

Scenario I (S1)

Irrigation depth of winter wheat is reduced by 5–25%

in the NCP provinces, while the irrigated area of winter

wheat remains unchanged. The simulation is based on

the assumption that the reduction of the irrigation

depth is evenly distributed in each grid where irrigation

is applied in the NCP provinces. This scenario leads to

a reduction of irrigation water by 5–25% in the region.

Scenario II (S2)

Irrigated winter wheat area is reduced by 5–25% in the

NCP provinces, and it is replaced by rainfed winter

wheat area. By assuming an even distribution of the

replaced irrigated area, this scenario will result in

5–25% of irrigation water reduction in the NCP

provinces.

Table 4 Documented results of CWP in China

Crop Regioin/
stations

Reference CWP-rangea

(kg m–3)
Mean
(kg m–3)

SD
(kg m–3)

Minimum
(kg m–3)

Maximum
(kg m–3)

Irrigated winter wheat North China plain This study 0.40–1.51 1.19 0.36 0.18 2.20
Irrigated winter wheat North China plain Zhang et al. (1999) 1.18–1.40
Irrigated winter wheat North China plain Jin et al. (1999) 1.49–2.30
Irrigated winter wheat North China plain Zhu et al. (1994) 1.48
Rain-fed winter wheat Hebei province This study 0.20–0.87 0.65 0.23 0.18 0.91
Rain-fed winter wheat Hebei province Mo et al. (2005) 0.05–0.83
Irrigated winter wheat Hebei province This study 0.68–1.63 1.42 0.32 0.18 2.20
Irrigated winter wheat Hebei province Mo et al. (2005) 1.23–1.58
Winter wheat Hebei province McVicar et al. (2002) 0.12–2.15
Rain-fed winter wheat Beijing city This study 0.60–0.73 0.66 0.05 0.68 0.81
Irrigated winter wheat Beijing city This study 0.89–1.60 1.30 0.21 0.69 1.80
Winter wheat Beijing city Zhang et al. (1998) 0.93–1.55
Irrigated winter wheat Changwu station This study 0.76
Irrigated winter wheat Changwu station Li et al. (2000) 0.65–1.21
Irrigated winter wheat Changwu station Kang et al. (2002) 0.77–1.46
Irrigated winter wheat Luancheng station This study 1.37
Irrigated winter wheat Luancheng station Zhang et al. (2004) 1.01–1.61
Irrigated winter wheat Luancheng station Zhang et al. (2003) 1.28–1.82
Irrigated winter wheat Luancheng station Wang et al. (2001) 1.08–1.28

a Defined as the 5 and 95 percentile of the entire range for ‘‘this study’’
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For both the scenarios, it is assumed that spring

wheat sown area and its yield remain unchanged.

Under S1, when irrigation reduction is less than

20%, each percentage (1%) reduction will lead to

0.41% reduction of wheat production in the NCP

provinces, or 0.17% of wheat production reduction in

China. When the irrigation reduction surpasses 20%,

each percentage reduction will lead to 1% of wheat

production reduction in the NCP provinces, or 0.42%

reduction of wheat production in China (Fig. 7). This is

mainly because the impacts of irrigation reduction on

yield depend upon the severity of water stress of the

crop. A significant change in the production reduction

rate when the irrigation reduction is over 20% indi-

cates a water stress threshold, above which wheat yield

will be seriously affected. The results suggest the

importance for controlling the irrigation depth reduc-

tion rate below 20% to prevent significant wheat pro-

duction losses.

Under S2, each percentage irrigation reduction will

lead to 0.44% of wheat production reduction in the

NCP provinces, or 0.18% of wheat production reduc-

tion in China (Fig. 7). This reduction rate remains

unchanged over the range considered. The production

reduction is due to the yield difference between irri-

gated and rainfed winter wheat in the NCP provinces.

S1 and S2 have similar effects on wheat production

when the irrigation reduction rate is below 20% (see

Fig. 7). When irrigation reduction is above this per-

centage, S2 outweighs S1. This indicates that depend-

ing on the magnitude of irrigation reduction, different

measures may be taken to optimize water allocation

and food production. For water savings of up to 20%

irrigation water, there is no large difference between

S1 and S2 for the production. If more irrigation is

planned to be reduced, S2 will be more efficient than

S1 since S2 reduces wheat production less with the

same water saving.

Within the NCP, the Haihe River Basin is the most

water stressed area. The basin primarily includes Hebei

and two mega cities, Beijing and Tianjin. With only

1.0% of China’s water resources and some 3.3% of

China’s total areas, the Haihe River Basin accounts for

about 10% of the national population, 15% of China’s

industrial production, and 10% of the total agricultural

output (Yang and Zehnder 2002). However, water

scarcity has imposed an increasing constraint to the

economic development in the region (Yang and Ze-

hnder 2005). Based on the most authoritative projec-

tion by the Chinese Academy of Engineering and the

Chinese Academy of Sciences, water demand will in-

crease by 1.38 and 1.15 billion m3, respectively, in the

industrial and domestic sectors in the Haihe River

Basin in the first decade of the twenty first century

(Pan and Zhang 2001). This increased water demand

could be met by a reduction of irrigation water supply

by 20%, which represents a release of 2.66 billion m3

of water from irrigation. The GEPIC simulation sug-

gests that this will lead to about 3.5% reduction of the

national wheat production, either by implementing

deficit irrigation (S1) or by changing irrigated winter

wheat into rainfed winter wheat. In other words, the

projected water demand increment in the industrial

and domestic sectors in the Haihe River Basin may be

compensated with a relatively small percentage de-

crease in wheat production in the country.

Conclusion

The GEPIC model provides a systematic way to esti-

mate crop yield, crop water productivity and irrigation

for winter wheat across regions with relatively high

spatial resolution. It is also capable of simulating the

impacts of changing water situation on wheat produc-

tion, and thus can be a useful tool for supporting policy

making in integrated water resources management in
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China as well as in other countries and regions in the

world.

Irrigation has played an important role to improve

CWP in the NCP and the Northwest provinces. The

simulation results showed that, in the NCP provinces,

CWP under irrigated conditions was 56% higher than

that under rainfed conditions. However, the intensifi-

cation of water stress has raised a need to consider

alternatives for irrigating winter wheat. Water savings

are possible by either reducing irrigation water supply

or by reducing heavily irrigated areas by those using

less irrigation. Up to 20% of reduction of irrigation

water supply, simulations provide very similar results

for both scenarios. However, above 20% reduction, the

replacement of irrigated by rainfed areas causes a

lower loss of production with the same amounts of

irrigation water reduction.

It needs to be pointed out that the analysis of trade-

offs in the two scenarios in this study is far from

comprehensive. First, the reduction in irrigation depth

or irrigated area may likely occur in the areas where

irrigation is less important in improving winter wheat

yield. The irrigation depth in these areas is likely small.

In this case, the effects of a given percentage reduction

in irrigation depth or irrigated area on the national

winter wheat production would be less significant than

that simulated here. However, the amount of irrigation

water saving would also be smaller. Second, the auto-

matic irrigation and fertilization option may lead to an

overestimation of crop yields and CWP by assuming

that local farmers have perfect knowledge in water and

fertilizer management. The timing of irrigation and

fertilization can affect crop yields and CWP and

therefore requires further analysis. To do this, further

detailed input data on water and fertilizer management

is necessary for each county. Third, when comparing

the benefits and costs of different scenarios, many

additional factors also need to be considered, typically

farmers’ income, rural employment, social stability,

food security, and the environmental impact of irriga-

tion, etc. A comprehensive assessment integrating

economic and social issues is necessary for the future

research to better understand the pros and cons of

different scenarios.

The accuracy of the GEPIC outputs largely depends

on the quality of the input data. Although the valida-

tion has shown that GEPIC generally performed well

in simulating crop yield and CWP in China, large dis-

crepancies still existed between the simulated and

statistical values in many counties. The errors in the

inputs and the assumptions made in this study partly

contributed to the errors of the outputs. For example,

the estimation of the nitrogen fertilizer rate per hectare

is extremely rough, and may lead to large fertilizer

input errors. The default crop parameters cannot ex-

actly reflect the crop characteristics in China. The

assumption that the farmers optimize the use of water

and nitrogen is also far from the reality. Apart from

water and nutrient, some other factors like pest and

diseases may also pose constraints to crop growth.

Although EPIC has a generic pest component for

simulating insect and disease damage and a weed

competition component, the function is difficult to

apply on a national scale due to the lack of the nec-

essary information. Access to the more detailed data-

sets will improve the accuracy of the simulation results.

In this study, we estimate the irrigation depth indi-

rectly by comparing simulated and statistical yield

data. This method is based on the assumption that all

the inputs like soil parameters, fertilizer application

rates, crop calendar are accurate. The results can be

affected by the uncertainty of these inputs. Besides,

other factors such as pest and disease infestations can

influence crop yield. We did not integrate the effects of

these factors. This may lead to underestimation of

irrigation depth. However, as long as the data base on

these factors is weak, the possibility of uncertainties

reduction remains limited.
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