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Abstract: Efficient Global Optimization (EGO), one Bayesian analysis optimization algorithm, makes

use of Kriging model to construct statistical approximation model and uses infill sampling criteria

(ISC) to find the next sampling point updating the model. This method is discussed in detail and ap-

plied in ship mechanics with two traditional optimization examples.One is a submarine conceptual

multidisciplinary design, which considers hydrodynamics, propulsion,weight and volume, performance,

and cost. It is a mixed- variable optimization problem defined by 8 real design variables,3 integer de-

sign variables and 12 constraints.The other is stiffened panel optimization under buckling.Compared

with traditional methods, EGO not only finds the global optimal point, but also completes the optimization

more efficiently. The results demonstrate that EGO is very suitable for optimization in ship mechanics.
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1 Introduction

Modern engineering design problems are complex and involve multiple disciplines, as the

same in the field of ship mechanics. In order to reduce the complexity and improve the design

efficiency, the multidisciplinary design optimization (MDO)[1] is brought into engineering de-

sign field to solve such large coupled systems. However, during the application of MDO in ship

mechanics, the expense of analysis models is often a prime concern, because some disciplinary

analyses need lots of time to operate,such as CFD for hydrodynamics and FEA for structural

analysis.If we integrate these disciplinary analyses into the overall design optimization directly,

the computation is tremendous. Optimization with surrogate modeling, which can reduce com-

putational time and improve the efficiency, seems to be a good substitute, but it just finds the

approximate optimal value,or even the local optimal value as the imprecision of the surrogate

modeling. Constructing a precise metamodel with large amount of sample points, is a tremen-

dous work ahead of optimization.

Efficient Global Optimization (EGO), developed by Jones, Schonlau and Welch [2], belongs

to Bayesian analysis optimization algorithms. It constructs Kriging model with a small initial
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data sample within the design space.Based on this model, a so- called infill sampling criteri-

on is evaluated to select a set of additional points, and then the approximation is updated with

these points to improve accuracy. This process continues until the improvement expected from

sampling additional points has become sufficiently small.Comparing with other surrogate mod-

el, EGO not only converges to global optimal value, but also works efficiently.

For the purpose of exploring how EGO can be applied in the Ship Mechanics, this paper

presents two examples.One is a submarine conceptual multidisciplinary design,which is a

mixed- variable optimization problem.The other is stiffened panel optimization under buckling.

Finally,the EGO results are compared with results using common method to demonstrate the

advantages of EGO.

2 Efficient Global Optimization

Efficient Global Optimization (EGO), one of global optimization, fits into a general class

of optimization algorithms which we will refer to as Bayesian analysis algorithms [3].These

global searching algorithms use statistical models from an initial data sample to determine

where to evaluate the next functions via an auxiliary optimization problem. EGO uses Kriging

model as the statistical approximation model,and uses a generalized expected improvement

function to prefer the points that either low objective function value or high uncertainty.

2.1 Kr iging model

Kriging is named after D.G. Krige, a South African geologist,who first used the statistics-

based technique in analyzing mining data in the 1950s and 1960s[4]. It assumes response value

is the weighted sum of sample data while the weighting coefficients are obtained through the

best liner unbiased prediction (BLUP). Since the end of 1980s, Kriging model was developed

as a new direction applied to deterministic computer experiments[5].This Kriging model con-

centrates and specializes on only a small portion of the available knowledge,extremely flexible

due to the wide range of correlation functions chosen for constructing the approximation mod-

el. This paper adopts the second kriging model to build metamodel.

The present Kriging model combines a global model plus localized departures:

y!"x =f!"x +Z!"x (1)

where y!"x is the unknown function of interest, f!"x is the known global model (usually poly-

nomial) to approximate the design space,and Z!"x is the realization of a stochastic process with

mean zero and nonzero covariance to represent a local deviation from the global model.The

correlation between Z x
i! "and Z x

j! "is strongly related to the distance between the two cor-

responding points, x
i

and x
j
.In EGO, a special weighted distance function between the points

x
i

and x
j

is expressed as
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where !h are the unknown correlation parameters used to fit the model, ph represent the smooth-

ness of the function in coordinate direction h. With this distance function, the correlation be-

tween the points x
i

and x
j

is defined as

Cov Z x
i! ", Z x

j! "# $=exp - d x
i
, x

j! "% & (3)

The Kriging model predicts the response value as

y!="!+r
T!"x R

- 1

y- 1"!! " (4)

where "! is the estimated value of f using Eq.(5):
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R denotes the n×n matrix whose i,! "j entry is Cov Z x
i! ", Z x

j! "% &, r is the correlation vec-

tor whose ith element is

ri
!"x =Cov Z!"x , Z x

i!"% & (6)

and 1 denotes an n- vector of ones.

The unknown parameter of Eq.(4) is !, which can obtained by maximizing the following

likelihood function
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can be defined as
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when ! is obtained, the Kriging model can be obtained using Eqs.(4)~(6).

2.2 Infill Sampling Cr iter ia (ISC)

The infill sampling criteria determines which design points to sample next (the so- called

infill samples).It is a completely different method than algorithms that rely on a search path

because the sampling criterion could place the next iteration anywhere at all in the design

space. Furthermore, it tends to choose the design points most likely to improve the accuracy

of the model and/or have a better function value than the current best point. The ISC used by

EGO is known as the expected improvement function, which is defined as

EI=
fmin- y!! "$ fmin- y!
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(9)

where fmin is the minimum feasible sampled value of function after n evaluations, y! and #! are

estimated response and variance using Kriging model., $!"and %!"denote the cumulative

distribution function and probability density function of the standard normal distribution, re-

spectively.
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The first term in Eq.(9) tends to be large where y! is likely smaller than fmin, and the sec-

ond term tends to be large where there is high uncertainty about whether or not y! will be bet-

ter than fmin . Therefore, the expected improvement will tend to be large which is likely im-

proved and to be of high uncertainty.

In order to determine the next sample points to be evaluated,the ISC problem will be

maximized as follows:

max ISC=EI

s.t. g!"x ≤0 (10)

2.3 The procedure of EGO

The basic procedure of EGO is as follows:

(1) Use a space- filling design of experiments to create a set of initial sample points and

evaluate the response at sample points;

(2) Based upon the sample points and their evaluations, construct approximation model

with Kriging model;

(3) Perform one complete optimization with infill sampling criteria to search for the point

where to sample;

(4) Calculate response of the true function at the new sample point and update the Krig-

ing model with this sample point;

(5) Check if the expected improvement function has become sufficiently small. If suffi-

ciently small, terminate the process. Otherwise, return to (2).

During the step (2),one issue should be paid attention to.If the approximation model does

not fit well,it is always to improve the model by appropriate transformations of the response.

Generally, cross validation, a statistical technique, is often used to assess the predictive capa-

bility of the approximation model. When the model is found to be bad fit, the response func-

tion will be transforming with the log transformation, ln !"y or - ln -! "y , or the inverse trans-

formation, - 1/y.

3 Numer ical examples

In order to demonstrate EGO well suitable for ship mechanics, this paper adopts two ex-

amples.One is a submarine conceptual multidisciplinary design,which is a mixed- variable op-

timization problem; the other is stiffened panel optimization under buckling, and the numeri-

cal analysis is carried out using ANSYS.

3.1 Implementation to a submar ine conceptual design optimization with EGO

The design of a submarine is a complex, multidisciplinary process which is characterized

by thousand of design variables,multi- objectives and nonlinear constraints. A complete design

requires analyses of hydrodynamics, propulsion, weight and volume, performance, cost and the

others. It is important that each of these aspects should be addressed at the conceptual design
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phase. In this application, the main disciplines of hydrodynamics, propulsion, weight and vol-

ume, performance, and cost are included. The hydrodynamics analysis is responsible for pre-

dicting the physics of motion and action of the submarine in water,the state output from this

analysis is an estimate of total resistance,envelope volume and some hydrodynamics charac-

teristics of the submarine;the propulsion analysis mainly considers the torque of the electric

motor which is transmitted into the thrust on the hull,and calculates the propulsion system

weight, volume and power characteristics based on the database of propulsion plant types and

battery types;Weight prediction is based on empirical models developed from a database of

submarine of this designed and fabricated series during the past decade, and determines total

submarine weight and center of gravity location; performance analysis mainly estimates maxi-

mum endurance speed (sprint speed),sprint range and endurance range;cost analysis estimates

the basic construction cost of the submarine.

The optimization problem, defined by 8 real design variables, 3 integer design variables

and 12 constraints, is summarized in Tab.1.

Tab.1 Summary of the submar ine conceptual design problem

Design variables Constraints Objective function

Length forebody (Lf) Sprint speed > Required sprint speed

Length midbody (Lm) Sprint range > Required sprint range

Lenght aftbody (La) Endurance range > Required endurance range

Diameter of vessel (D) Prepare power > Required power Basic

Operation depth Prepare space > Required space Construction

Battery energy Maximum free flood volume required ratio> 0 Cost

Fuel weight Minimum free flood volume required ratio> 0

Endurance speed Minimum lead required ratio > 0

*Power plant type Maximum lead required ratio > 0

*Battery type Minimum GM required ratio > 0

*Number of generator Minimum GB required ratio > 0

Primary electric power required ratio > 0

(*: the discrete variable)

Tab.2 shows the optimization result with EGO,meanwhile, compared with results for tra-

ditional MDO method, Multidisciplinary Design Feasible (MDF) and Collaborative Optimiza-

tion (CO), which is given in [6]. The results for three different optimization methods are pre-

sented for the comparison purpose. Hereinto, EGO has found the global optimal point, and the

optimization result with EGO is obviously better than two other results. The optimization con-

vergence history of the objective with EGO is shown in Fig.1,which demonstrates that opti-

mization problem is close to convergence after 36 cycles and converges at the 79th cycle. Cao

Anxi et al[1] spent lots of computation in finding an appropriate initial point, or the optimiza-

tion would fail to converge.Besides,both MDF and CO did not find the global optimal point.

Compared with these two methods,EGO not only finds the global optimal point,bus also

completes the optimization with less evaluations of the objective.
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Tab.2 Result of the submar ine optimization

Parameters
Traditional optimization

(MDF)
Collaborative Optimization EGO

Geometry size

[Lf, Lm, La, D]

Operation depth

Battery energy

Fuel weight

Endurance speed

*Power plant type

*Battery type

*Number of generator

Basic construction cost

[8.01,16.53,16.68,6.76]m

76.2 m

8 540 kwhr

10.861 t

10.6 knots

1 type

1 type

1 number

263.562 million dollars

[7.92,17,16.58,6.79]m

76.23 m

8 460 kwhr

11.287 t

10.45 knots

1 type

1 type

1 number

269.144 5 million dollars

[7.64,14.10,16.45,7.25]m

76.2 m

9 366 kwhr

7.064 t

10 knots

1 type

1 type

1 number

262.394 6 million dollars

(*: the discrete variable)

Fig.1 Convergence history for EGO with basic construction cost

3.2 Stiffened panel optimization under buckling

Stiffened panels are basic elements of all types of ship structures,and absorb lateral loads

and distribute those loads to the ship’s primary structures, so the overall improvement in ship

structures is mainly dependent on the improved design of these panels. Light weight and high

strength are the major objectives for the design of stiffened panels,but they are sometimes

contradicted,because the reduction of weight may lead to the reduction of structure strength.

Therefore,it is meaningful to optimize the stiffened panels for the purpose of improvement in

ship structures.For traditional design, empirical formulas can be used to evaluate the response

of stiffened panel, but they may be less useful for new type stiffened panels, so the designer

has to rely more on numerical simulation codes used for optimization design. However, since

the numerical simulation codes are used in the optimization design, the derivatives of objec-

tive and constraints are hard to obtain,and the responses of simulation are usually noisy or

nonsmooth. Therefore, it is hard to optimize this kind of problem with the optimization method

based on derivative, such as Sequential Quadratic Programming (NLPQL) and Method of Feasible

478 船舶力学 第 12 卷第 3 期



Directions (CONMIN), which are sensitive to initial point and sometimes converge to the partial

optimal point.Optimization with approximation may be a good way to improve the efficiency,

but it needs a lot of sample points to construct an accurate surrogate model before optimiza-

tion, or the optimization result is doubtful. Therefore, EGO is chosen to optimize this problem.

Since buckling of stiffened panels has been a topic of interest for many years, this exam-

ple considers stiffened panel optimization under buckling. The design objective is to minimize

the mass of stiffened panel with the satisfactory of buckling load requirement.Tab.3 summarizes

the optimization problem. Besides, the width and length of stiffened panel both are 3 600mm,

and the thickness of all plates in 15mm. The web height, the flange width and the location of

the side stiffener with ranges of [50 150], [100 200] and [400 1 400] (mm) are taken as the

independent variables,the axial pressure is applied on the two transverse edges which are

simply supported and have rotational restraint about the z- axis, as can be shown in Fig.2.

Tab.3 Summary of stiffened panel optimization design problem

Design variables Constant Constraints Objective function

Web height (W_H)
Young’s modulus of E=

205.8GPa
Eigenvalue buckling load

Mass of stiffened panelFlange width (F_W) Poisson’s ratio of !=0.3 <

Location of the side

stiffener (L_S)
Required buckling load

Fig.2 Stiffened panel model

For simplicity,only the eigenvalue buckling load is considered in this example to

compare the efficiency and the accuracy between EGO and Multi- Island Genetic Algorithm

(MIGA)[7], the numerical simulation is carried out using ANSYS.

MIGA is a distributed Genetic Algorithm (GA) and more efficient than traditional GA.

The main feature of this method is that each population of individuals in one generation is di-

vided into several sub- populations called “Island”. All traditional genetic operations are per-

formed independently on each sub - population,and then some individuals are selected from

each island and migrated to different islands periodically. This method overcomes the prema-

ture convergence of traditional GA and enables the calculation to converge global optimal so-

lutions. The MIGA used in this optimization case is performed with iSIGHT[7].

Before the optimization, we make some modification for EGO. Since the constraint of this

problem is obtained through ANSYS simulation and not cheaply to be computed,we create a

penalty function with this constraint.Therefore, this case turns to be an unconstrained opti -
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mization problem, and the penalty function can be written as follows.

F!"x =f!"x +!· max 0, g!"x! "! "2 (11)

where the f!"x is the mass of stiffened panel,! is the penalty factor,and g!"x is the constraint

as following.

Tab.4 summarizes the results for the EGO and MIGA.Both methods find the identical de-

sign,within a slight tolerance. We can see that EGO finds the optimal point just with 87 sim-

ulations,while Multi - Island Genetic Algorithm takes 1 000 simulations to find the optimal

point. Besides, the EGO’s optimization procedure takes about 11.6 minutes, while the MIGA

takes about 84.6 minutes.

Tab.4 Result of the submar ine optimization

Parameters EGO MIGA

Web height (W_H) 0.085 1m 0.084 7m

Flange width (F_W) 0.100 0m 0.100 0m

Location of the side

stiffener (L_S)
1.016 6m 1.063 4m

Mass of stiffened panel 1 761.448 2kg 1 760.990 0kg

Number of simulations 87

Total time (minute) 11.6

1 000

84.6

Fig.3 shows the optimization convergence history of the objective with EGO,we can see

that the optimization result with Kriging model, which is constructed by 33 sample points us-

ing Latin Hybercube, is not the global optimal value, because the initial Kriging model is not

accurate enough. After 80 cycles of ANSYS simulation, the EGO found the optimization result

and converged at 87th cycle.Fig.4 demonstrates the optimization convergence history of the

objective with MIGA.It shows that obtaining a point nearby the global optimal point needs 8

generations, which means needing ANSYS to simulate 400 times. Furthermore, the optimal

value is found after 20 generations, which means needing ANSYS to simulate 1 000 times.

Fig.3 Convergence history for EGO with mass of stiffened panel
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Fig.4 Convergence history for MIGA with mass of stiffened panel

In this case, EGO not only shows perfect global search ability, but also performs more ef-

ficiently than MIGA. It can be deducted that EGO is more suitable for optimization expensive

(Costly) and time- consuming global optimization. In ship structural mechanics, FEM softwares

are used in order to provide high- fidelity predictions for the structural responses,while the

computation always is expensive (Costly) and time- consuming. Therefore, comparing with tra-

ditional method, EGO is more suitable for the optimization in ship structural mechanics.

4 Summary and conclusions

Efficient Global Optimization is the most appealing method of global optimization.This

method is discussed in detail in this paper, and applied in ship mechanics with two examples.

One is a submarine conceptual multidisciplinary design, which is a mixed- variable optimiza-

tion problem defined by 8 real design variables, 3 integer design variables and 12 constraints,

the other is stiffened panel optimization under buckling.Both are typical optimization problems

in ship mechanics. Compared with traditional method, EGO not only finds the global optimal

point, but also completes the optimization more efficiently. Therefore, the EGO is very suit-

able for ship mechanics.

In the field of ship mechanics,ship design optimization belongs to MDO which contains

many disciplines, such as structure mechanics, propulsion, resistance, machinery and cost.

There is much interactive coupling among these disciplines. Besides, some disciplinary analy-

ses need lots of time to operate,such as CFD for hydrodynamics and FEA for structural anal-

ysis.How to find the global optimal point for ship design optimization with MDO in an effi-

cient way is the key point. Since the special framework, Collaborative Optimization (CO), one

of the most frequently applied multidisciplinary design optimization methods,happen to be

non - convergence to the global optimal point or converging slowly near the global optimal

point. EGO will be a good to overcome the weakness,and allows system to converge faster and

more robustly. Current work is focused on applying the EGO in CO, which will be a promising
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way to improve the efficiency of ship design optimization.
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高效优化算法在船舶力学中的应用研究

赵 敏 1, 操安喜 1, 苟 鹏 1, 崔维成 2

( 1 上海交通大学海洋工程国家重点实验室 , 上海 200030; 2 中国船舶科学研究中心 , 江苏 无锡 214082)

摘要: 作为一种贝叶斯优化算法 , 高效全局优化算法( EGO) 利用克里格模型来构造近似模型 , 并采用样本填充准则以寻

找下一个样本点来更新近似模型。文中详细介绍了该优化算法 , 并将其应用于船舶力学的两个典型优化例子。其中一个

是潜艇的多学科概念设计 , 考虑了水动力、推进、重量、性能和成本 5 个学科 ; 另外一个是屈 曲状态下加筋板的优化问

题。与传统优化相比 , 高效全局优化算法不仅收敛到全局最优解 , 而且更加有效。结果表明高效优化算法非常适用于船

舶力学中的优化问题。

关键词: 高效全局优化算法( EGO) ; 船舶力学; 克里格模型; 样本填充准则( ISC)
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