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Abstract: Linear hydroelasticity is introduced to investigate the 
hydroelastic responses of flexible floating structures to regular 
waves in the frequency domain. The fluid around the floating 
models is assumed to be ideal and its behaviour is modelled by 
velocity potentials. The controlling equations are solved with 
Green Function method under relevant boundary conditions at 
the free surface condition, fixed hull surface condition, deep-
water condition and far field radiation condition. Two models 
are used as numerical examples. Experimental results are 
compared with numerical results (such as the principal responses, 
vertical displacement of different points to different incident 
wave circular frequencies, etc.). Fore-and-aft of the models have 
different maximum vertical displacements to a given incident 
wave. When the incident wave frequencies are close to the wet 
natural frequencies of the flexible modes, the vibrations or 
relatively large responses are found, and these modes will have a 
great influence on the total displacement responses 
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1 Introduction 

For a flexible floating structure, such as a very large 
floating structure (VLFS)[1-4] or a structure composed of 
several floaters connected by flexible connectors [5], 
structural responses of the body should not be obtained by 
the classical rigid body sea keeping analysis. Rather it is 
necessary to account for the direct hydroelastic coupling 
behaviour of fluid and structures. Linear hydroelastic 
theories [6,7] have been applied to the design and research 
related to marine structures for several decades. Also 
nonlinear procedures [8-10] are increasingly applied. 

By using the three-dimensional linear hydroelasticity 
theory proposed by Wu [7], two flexible floating 
laboratory models are analysed in this paper. The first 
flexible floating model consisted of 12 floaters 
interconnected by means of two elastic plates [5]. The 
length, width and height of each floater are respectively 
0.19m, 0.6m and 0.25m, and the two elastic plates are 
made of steel. The second one is a VLFS[11]. With a full 
scale, the length, width and height of the model are 300m, 
60m and 2m respectively. The numerical results are 
compared with the experimental ones, and good 
agreement is found, especially for the one of the VLFS 
model. 

 
2 Basic Theory 

The fluid around the flexible floating body is assumed 
to be ideal (i.e. uniform, continuous, inviscid, 
incompressible and irrotational) and the surface wave is of 
small amplitude. Hence, the fluid behaviour can be fully 

governed by the velocity potential. In order to simplify the 
expression, two coordinate systems are introduced, 
namely the equilibrium frame of Oxyz , and the body 
fixed axes system '''' zyxO . The origin of the Oxyz  
system is on the point of the intersection of the steady 
water surface and the vertical line, which goes through the 
gravity centre of the structure, and the axis Oz is upward. 
The '''' zyxO  system is fixed on the floating body. 

 
2.1 Decomposition of the velocity potential and 

hydrodynamic forces 
Based on the assumptions of the fluid field, the 

velocity potential (unsteady velocity potential) around the 
floating body in the equilibrium frame may be 
decomposed into the form (see e.g. [7]) 
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where ( )tzyxI ,,,φ , ( )tzyxD ,,,φ and ( )tzyxr ,,,φ  
denote the incident wave potential, diffraction wave 
potential, and radiation wave potential arising from the 
responses of the flexible body. In frequency domain, the 
unsteady velocity potential and the vibration principal 
coordinates may be further expressed as  
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( ) { }trr ptp ωieRe= ,                          (3) 
where ω  is the wave circular frequency; 

( )ωϕ ,,, zyxI and ( )ωϕ ,,, zyxD  are components of 
the incident wave velocity potential and the diffraction 
wave potential respectively; ( )ωϕ ,,, zyxr  

( )mr ,,1=  is the components of the radiation wave 
potential arising from the vibration in the r -th principal 
dry mode of the flexible body, with unit amplitude and 
frequency is ω ; m is the number of modes; ( )ωrp  is the 
complex amplitude of the principal coordinate. The sign 
Re{ } in Equations (2) and (3) denotes the real part of the 
complex in { }. The sign Re{ } is omitted in the following 
expressions of the potentials and the principal coordinates 
for clarity. With a given wave circular frequency ω , 

( )ωϕ ,,, zyxD  and ( )ωϕ ,,, zyxr  can be solved by 
the Green Function Method [12] under the following 
governing equation and boundary conditions. 
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where ][Ω , [ ]FS , [ ]S , [ ]BS  and [ ]∞S  mean the fluid 
field, the free surface, the hull surface, the sea bed and the 
far field cylinder respectively; n  denotes the normal 
vectors of the body’s wetted surface defined in Oxyz ; g  

is the gravity acceleration; 0
ru  denotes the r -th mode of 

the structure in vacuum, it can be obtained from a 
structural analysis codes; vϕ can be Dϕ  or rϕ . The 
Lagrange integral equation gives the relationship between 
the velocity potential and the pressure of the fluid as 

( ) 0,,,
=

∂
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++
t

gztzyxp φ
ρ

.                      (5) 

( )tzyxp ,,,  and ρ  are respectively the pressure and the 
density of the fluid. 

The fluid pressure acting on the mean wetted surface 
S during the motion and distortion of the body is given 
by the Bernoulli equation in the equilibrium axes system,  
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The generalized forces acted on the floating body can 
be expressed as  

∫∫ ⋅−=
S

rr SpuntZ d)( 0
.                     (7) 

Substitution of Equations (2) and (6) into Equation (7) 
yields 

( ) ( ) ( )tRtHtEZtZ rrrrr +++= )0()( ,             (8) 

where )0(
rZ , ( )tEr , ( )tH r  and ( )tRr  are the 

generalized constant forces, the generalized wave exciting 
forces, radiation forces and restoring forces. They are be 
respectively expressed as follows:  
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are the coefficients of the generalized wave exciting 
forces, the coefficients of added mass and added damping, 
and the frequency independent coefficients of the 
generalized restoring forces. w  in Equation (12) and 0

kw  
in Equation (15) are vertical displacement and the vertical 
displacement component of the mode k . 
 
2.2 Equation of motion 

Based on the solutions of the generalized fluid forces 
acting on the flexible floating body, the equations of 
motion for solving the vibration principal coordinates 

( )tpk  may be represented as 
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where rka , rkb  and rkc  are the elements of the 
generalized mass matrix, the generalized damping matrix 
and the generalized rigid matrix of the structure 
respectively. Equation (16) can be solved in frequency 
domain, the solving equation can be expressed as 
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When the responses of the principal coordinates have been 
obtained, one can calculate the vertical displacement by 
using the following equation  

( ) ( )∑
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,                           (18) 

where rw  are the vertical displacement modes of the 

floating body. rw  as well as rka  and rkc  in Equation (17) 
can obtained directly from relevant structural analysis 
codes. A structural damping is conveniently introduced by 
the Rayleigh or proportional damping [13] to form the 
damping matrix as a linear combination of the stiffness 
and mass matrices of the structure, that is 

mracb rrrrrr ,,7, =+= βα ,                 (19) 

where rra and rrc are diagonal elements of the 
generalized mass matrix and the generalized rigid matrix 
respectively; α  and β  are called, respectively, the 
stiffness and mass proportional damping constants, which 
can be associated with the fraction of critical damping ξ  
as 
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)/(5.0 ωβαωξ += ,                         (20) 
Therefore, α  and β can be determined by choosing 

the fractions of critical damping ( 1ξ  and 2ξ ) at two 

different frequencies ( 1ω  and 2ω ), and can be solved by 
the following equations 
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In this paper, the Rayleigh damping factors α  and β  are 
computed on the basis of the first two natural frequencies 

1ω  and 2ω  determined by the damping properties of the 
dry structure. 
 
3 Example structures 

The first flexible floating model (called Model 
structure 1 in the following text), shown in Figure 1, 
consisted of 12 floaters interconnected by means of two 
elastic plates [5]. The length, width and height of each 
floater are respectively 0.19m, 0.6m and 0.25m, and the 
two elastic plates are made of steel. The thickness and 
width of the elastic plates are 4mm and 50mm 
respectively. The draught of the floater is 0.12m.  

 

 

Figure 1 Schematic outline of Model structure 1 

The second one is a VLFS [11] (called Structure 2 in 
the following text). Particulars of the full-scale structure 
are shown on Table 1. 

The natural frequencies and generalised structural 
damping of the first three vertical bending modes of the 
two structures are shown in Table 2. Here, we assume that 
the critical damping 1ξ  and 2ξ  is 5% (The influence of 
the structural damping will be briefly discussed in the next 
section). 

The mode shapes of the first three vertical bending 
modes of the Model structure 1 and Structure 2 are shown 
in Figures 2 and 3 respectively. 

Table 1  Particulars of the Structure 2 

Particulars Symbol/Unit Value 
Length L / m 300.0 

Width B / m 60.0 

Height D / m 2.0 

Draught d / m 0.5 

Vertical bending ridigity EI / Nm2 111077.4 ×  

Young’s modulus E / N/m2 101019.1 ×  

Poission’s ratio v  0.13 
Density ρ /kg/m3 256.25 

 

Table 2 Natural frequencies and generalised damping force 
per unit velocity of the first three vertical bending modes 

Model structure 1 Structure 2 Mode 

number Frequency GDF/UV* Frequency GDF/UV*

1 0.705 Hz 6.334 0.156 Hz 226051 

2 1.720 Hz 5.735 0.430 Hz 620418 

3 2.960 Hz 8.670 0.845 Hz 18999769

*:GDF/UV means generalised damping force per 
unit velocity. 

 
(a) First vertical bending mode  

 
(b) Second vertical bending mode 

 
(c) Third vertical bending mode 

Figure 2   First three vertical bending mode shapes of Model 
structure 1 

 

 
1st vertical bending mode of Structure 2 

 

 
2nd vertical bending mode of Structure 2 

 

 
3rd vertical bending mode of Structure 2 

Figure 2    First three vertical bending mode shapes of 
Structure 2 

 
4  Results and Discussion 

Figure 4 shows the calculated response amplitude 
operator (RAO) of the two structures. VB means vertical 
bending. The pitch response of structure 2 is shown 
separately in Figure 4(c) for the reason of clarity.  A 
relatively large value of the 1st vertical bending mode can 
be found in the Figure 4 (a) at the circular frequency of 
6.0 rad/s. It is because of this wave exciting frequency is 
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close to the wet resonance frequency rwω (=6.01 rad/s) of 
the first vertical bending mode, which can be calculated 
by solving the follow characteristic equations [9] 

( )[ ] ( ) 02 =+++− rrrrrrrrrw CcAa ωω .            (22) 

In Equation (22), ( )ωrrA  are diagonal elements of the 
added mass matrix when the floating body vibrate with the 
wave frequency ω ; rra , rrc  and rrC  are diagonal 
elements of the generalized mass matrix, the rigid matrix 
and the restoring matrix respectively.  

Other resonance phenomena cannot be found in 
Figure 4. This is because the wet resonant frequencies are 
larger than 8 rad/s. 

Figures 5 and 6 show the vertical displacements of the 
fore and midship of the two models. The influence of 
structural damping is shown and compared with the 
experimental ones of Model structure 1. The agreement of 
Model 1 is not so good, but that of Structure 2 is very 
good. It also can be found that the structural damping has 
a considerable influence on the vertical displacement 
amplitude of Model structure 1 from the frequency 4rad/s 
to 6.5rad/s. On the other hand, we found from the 
calculation results that the influence of the structural 
damping can be neglected for Structure 2. It is because the 
natural frequencies of the Structure 2 are very low. 
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(a) Model structure 1 
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(b) Structure 2 
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(c) Pitch of structure 2 

    Figure 4  Relationship between the RAO and the circular 
frequency 
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(a) Model structure 1 
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(b) Structure 2 

Figure 5  RAO for the vertical displacements of fore part and 
the circular frequencies         
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(b) Structure 2  

Figure 6  Relationship between the vertical displacements of 
the midship and the circular frequencies 

Figure 7 shows the vertical displacement along the 
length of the Model 1 for different wavelength, λ . L is 
the length of the structure. From this figure, it can be 
found that fore-and-aft of the model have different 
maximum vertical displacements for a given incident 
wave. In addition, for short waves, the differences in 
response along the length of the floating body are bigger 
than those of long waves. 

The wave circular frequencies have a great influence 
on the vertical displacement. For example, from line 0.8L 
of Figure 7, it can be found that the pitch mode has great 
influence on the vertical displacement (implying of the 
fore and aft are bigger), and also of the first vertical 
bending modes (implying of the midship is the largest). It 
is because the frequency corresponding to λ =0.8L is 
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about 5.6rad/s, which is close to the wet resonance 
frequencies of pitch (5.7rad/s) and first vertical bending 
(6.01rad/s). 
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Figure 7 vertical displacements along the length of Model 
structure 1 for different wavelength, λ  

Figure 8 shows the vertical displacement along the 
length of the structure 2. The results of rigid model as well 
as the flexible model are shown and compared with the 
experimental ones. Good agreement is shown between 
calculation and test results for the flexible model. It is 
seen that the rigid body model differs significantly from 
the experimental data. Hence a hydroelastic model is 
absolutely necessarily for the response analysis of flexible 
floating structures. 

 
5 Conclusions 

The two examples used in this study show the 
importance of hydroelasticity in analysing flexible 
floating structures such as a flexible connected floaters or 
a VLFS. 

Resonant characteristics can be found in the analysis 
when the exciting wave frequency is close to the wet 
resonance frequency of the floating body. 

The displacement varies along the length of the vessel. 
In general, the response of the fore and aft is relatively 
larger than that of the midship for short waves. When the 
wavelength is several times of the length of the floating 
body, the difference between the ends and midship 
becomes smaller.  This is because the structure follows the 
wave motion. 
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(a) L/λ =0.2 
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(b) L/λ =0.4 
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(c) L/λ =0.6  
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(e) L/λ =1.0 

  Figure 8 vertical displacements along the length of 
structure 2 


