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Abstract

In this paper, simplified formulas to calculate the ultimate strength of corrugated bulkheads
are derived using the beam–column theory. The formulas can take account of the influences
of shear force and adjoining structures. By comparing the results from present formulas with
those of other numerical analyses, it is shown that the formulas derived in this paper are
accurate and reliable for engineering purposes. Thus, a more powerful design tool is provided.
Finally the effects of the shear force and rigidities of adjoining structures on the ultimate
strength of corrugated bulkheads are also studied. 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The bulk carrier, long recognized as the workhorse of the world merchant fleet,
has over the years had its design refined and optimized on the basis of previous
successful experience. However, recently, a series of tragic ship losses with loss of
human lives, has focused the attention of the marine industry and the public on the
performance and inherent safety of this ship type [1].

Many studies to reduce bulk carrier casualties have subsequently been undertaken
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by major classification societies and international organizations such as the Inter-
national Maritime Organization (IMO) [2], and the International Association of
Classification Societies (IACS).

By extensive research and investigation, people find that one major possible cause
of the loss of oceangoing bulk carriers is progressive collapse of corrugated bulk-
heads in a flooded condition. So, in the past few years, many people have carried
out research on the ultimate strength of transverse corrugated bulkheads and several
proposed simplified formulas to calculate the ultimate bending moment acting on
them. But in their studies, the influence of axial compression in the bulkheads
induced by global vertical shearing forces of the ship is not considered and the
boundary conditions at the junction of corrugation and adjacent structures are con-
sidered as either simply supported or clamped which is not the real case.

In this paper, we attempt to make new contributions to the above two problems.
First, based on the results of other previous experimental and finite element analyses
[3–5], we use the single corrugation model as shown in Fig. 1 to carry out research
on the ultimate strength of corrugated bulkheads and a simplified formula taking
account of the axial force to calculate the ultimate bending moment which the corru-
gated bulkhead can resist is proposed by improving that of Paik et al. [3]. Then,
using the elasto–plastic theory, a formula to predict the corresponding ultimate
applied lateral pressure taking account of the influences of adjoining structures and
axial compression is proposed and validated. Finally, the effects of the shear force
and rigidities of adjoining structures on the ultimate strength of corrugated bulkheads
are also studied.

2. Ultimate bending moment

2.1. Simplified formula proposed by Paik et al. [3]

To derive a simplified formula for predicting the ultimate bending moment for a
single corrugation, Paik et al. [3] used a credible axial stress distribution over the

Fig. 1. Same single corrugation model used for the prediction of the ultimate strength under lateral
pressure from two different sides of the transverse bulkhead.
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cross section of the corrugation at the ultimate limit state, assuming that the entire
material in compression of the corrugation reaches its ultimate buckling strength
while the material in tension is in full yielding, see Fig. 2.

The expression for the ultimate bending moment is given as [3]:

Mu5sof·Af·g1sow·Aw·sinf·
g2

d
1suw·Aw·sinf·

(d−g)2

d
1suf·Af·(d2g) (1)

whereAf is the section area of corrugation flange,a·tf; Aw is the cross section of
corrugation web,c·tw; d is the vertical height of corrugation web,c·sinf; and,g is
the final neutral axis at ultimate limit state

5
d[(suf−s0f)·Af+2suw·Aw·sinf]

2(s0w+suw)·Aw·sinf
(2)

f is the corrugation angle;s0f,s0w are the tensile yield strength of corrugation flange,
web, respectively; and,suf,suw are the ultimate compressive strength of corrugation
flange, web, respectively.

The ultimate compressive strength of the corrugation flange and web can be calcu-
lated by using the following empirical formula of Paik and Thayamballi [6]:

su

s0
5

1

Î0.996+0.17b2
(3)

wheresu is the ultimate buckling strength;sw for corrugation flange;suw for corru-
gation web;b is the reduced plate slendernes ratio;bf=(a)/(tf) √(s0f)/(E) for corru-
gation flange;bw=(a)/(tw) √(s0f)/(E) for corrugation web;s0 is the tensile yield
strength,= s0f for corrugation flange,=s0w for corrugation web; andtf,tw is the plate
thickness of flange and web respectively.

2.2. Simplified method considering the influence of axial compression [5]

When there exists an axial compressive stress, the stress distribution within the
section can be assumed (see Fig. 3) [7].

Since the total axial force acting on the cross section isT, this will result in the
following expression:

suf·Af2s0f·Af22s0w·tw·g9/sinf12suw·tw·(d2g9)/sinf5T (4)

Fig. 2. Assumed distribution of longitudinal stress in corrugation cross section at ultimate collapse state
(ultimate buckling in compression parts and full yielding in tension parts).
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Fig. 3. Assumed distribution of longitudinal stress in corrugation cross section at ultimate collapse state
considering the influence of axial compression (ultimate buckling in compression parts and full yielding
in tension parts).

Then we can derive the equation to calculate the height of the area subject to tensile
stress at ultimate limit state:

g95
d[(suf−s0f)·Af+2suw·Aw−T]

2(s0w+suw)·Aw
(5)

It may be worth pointing out here that there is a difference between Eq. (5) and Eq.
(2) even in the case ofT=0. In Eq. (2), the web area was projected to the vertical
direction while in Eq. (5), the total web area is used.

Then the final neutral axis at ultimate limit state can be given by:

g5g91h/2 (6)

whereh is the height of area subject to stress induced by axial compressionT

5T·sinf/2twsuw (7)

Finally, we can derive the equation to calculate the ultimate bending moment con-
sidering the axial compression:

Mu5s0f·Af·g1suf·Af·(d2g)12E
g

h/2

s0w·tw·y/sinfdy12 E
d2g

h/2

suw·tw·y/sinfdy (8)

5s0f·Af·g1suf·Af·(d2g)1s0w·tw·
g92+g9h

sinf
1suw·tw·

(d−g9)2−(d−g9)·h
sinf

The derivation above is under the premise thatg9 is larger than the thickness of
corrugation webtw. If g9,tw, Eqs. (4), (5) and (7) must be replaced by Eqs. (9)–(11):

suf·Af2s0f·a·g91suf·a·(tw2g9)12suw·tw·c5T (9)

g95
d[(suf−s0f)·Af+2suw·Aw−T]

2(s0w+suw)·Aw
(10)

h=the height of area subject to stress induced by axial compressionT
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5
[T−suf·a·(tw−g9)]·sinf

2tw·suw
(11)

If the result of Eq. (11) is less thand, then we can use Eqs. (13) and (14) to calculate
g and Mu.

According to the theory that the stress induced by axial force will not contribute
to the bending moment, we can obtain Eq. (12):

2h·tw·suw/sinf·(h/22g)2suf·a·(tw2g9)·g50 (12)

Then the equation to calculateg andMu is obtained:

g5
h2·tw·suw

2h·tw·suw+suf·a·(tw−g9)·sinf
(13)

Mu5s0f·a·g·g91suf·Af·(d2g)12 E
d2g

h2g

suw·tw·y/sinfdy5s0f·a·g·g91suf·Af·(d (14)

2g)1suw·tw·
(d−g)2−(h−g)2

sinf

If h, calculated by Eq. (11), is larger thand, we can see that the area of stress subject
to axial force has expended to the upper flange. Theng andMu can be obtained by:

2c·tw·suw·(d/22g)1a·x·suf·(d2g)2suf·a·(tw2g9)·g50 (15)

g5
c·tw·suw·d+a·x·suf·d

2c·tw·suw+a·x·suf+suf·a·(tw−g9)
(16)

wherex=height of area in upper flange subject to stress induced by axial force

=
T−2c·tw·suw=suf·a·(tw−g9)

suf·a

Mu =suf·(tw−x)·(d−g)+suf·g·g9

(17)

2.3. Flow chart

The procedure for calculating the ultimate bending moment acting on the single
corrugation can be represented by the flow chart shown in Fig. 4.

2.4. Influence of axial compression on the ultimate bending moment

To investigate the influence of axial force on the ultimate bending moment, we
define
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Fig. 4. Flow chart to calculate ultimate bending moment.

k5! T
EI

to replaceT, then the influence is shown in Fig. 5. WhenkL=0, the ultimate bending
moment will be the same as that of Paik’s result forf=90°. However, if f,90°,
there will be some difference. For example, if the corrugation angle of model P90-
1 whose dimensions are shown in Table 1 is changed into 60°, then Mu present/Mu

Paik=1.06.

Fig. 5. Ultimate bending moment varying axial force.
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Fig. 6. Single corrugation under the combined load of lateral pressure and axial compression.

3. Ultimate pressure load prediction

From the above formulations, we can calculate the ultimate bending moment at
the ultimate limit state for the corrugated cross section. To predict the corresponding
ultimate applied pressure load it is necessary to establish the relationship between
the applied pressure loads and the bending moments at the ultimate limit state. In
the following, we derive such a relationship using the beam–column theory.

Fig. 6 represents a single corrugation model that is a proxy for the behavior of a
corrugated bulkhead subject to lateral hydrostatic pressure and axial compression.
Fig. 7 shows the elastic bending moment distribution under these loading and
fixed conditions.

The lateral hydrostatic pressure distribution with a triangular pattern is assumed
to vary linearly between the bottom and deck structures, with the magnitude of press-
ure per unit length related to single corrugation as follows:

p5pb

x
L

wherepb is the lateral pressure at the lower (bottom) end of the corrugation.
In some references such as Paik et al. [3,4], a more general trapezoidal pattern of

pressure load is used. This will bring little difficulty for the derivation of the solution.
But in most of the practical applications [2,5], the triangular pattern has often been
employed for the distribution of the bulkhead’s pressure load and therefore this pat-
tern is chosen for study in this paper.

The lateral deflection can be given by solving the following differential equation
using the initial parameter method [8]:

EIwIV1Tw05p (18)

Fig. 7. Elastic bending moment distribution.
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w5w01
q0

k
sinkx1

M0

EIk2(12coskx)1
N0

EIk3(kx2sinkx)1E
x

0

p(x)dx
EIk3 [k(x2x) (19)

2sink(x2x)]

where

p(x)5pb

x
L

I=moment of inertia of the beam;E=Young’s modulus.
The four parameters in Eq. (19) can be obtained by considering the following

end conditions:

w(0)=0

w(L)=0
(20)

EISd2w
dx2D

x=0

=CdSdw
dxDx=0

EISd2w
dx2D

x=L

=−CbSdw
dxDx=L

(21)

whereCb and Cd are elastically fixed rigidities at the lower and upper ends of the
corrugation, respectively.

Then the equation to calculate bending moment is expressed as follows:

M5EI
d2w
dx2 5[(2EIksinkx1Cdcoskx)q01

sinkx
k

N01
1

k3L
(kx2sinkx)]·pb (22)

The extreme value of the bending moment inside the span will occure at the location
where the following condition is satisfied:

dM
dx

50 (23)

Then the maximum bending moment in the middle region and the bending moment
at the lower end can be given by:

Mmax5EI
d2w
dx2 5(2EIksinkxp1Cdcoskxp)q01

sinkxp

k
N01

1
k3L

(kxp2sinkxp) (24)

wherexp=the location at which the maximum bending moment occurs.

Mb5EI
d2w
dx2 5(2EIksinkL1CdcoskL)q01

sinkL
k

N01
1

k3L
(kL2sinkL) (25)



534 H.D. Ji et al. / Journal of Constructional Steel Research 57 (2001) 525–545

To facilitate the research below,Cb and Cd are non-dimensionalized:

CB5Cb·
L
EI

, CD5Cd·
L
EI

CompareMmax andMb, here a critical elastically fixed rigidityCBC is introduced at
which Mmax=Mb. WhenCD is constant,Mmax will be less thanMb if CB is larger than
CBC, vice versa.

3.1. CB.CBC

In this case,Mmax is less thanMb and it represents that the bending moment at
the bottom end will first reaches the ultimate bending moment of the beam cross
section and the plastic hinge will first formed at the bottom end, see Fig. 8.

So, the end condition will change into:

w(0)=0

w(L)=0

EISd2w
dx2D

x=0

=CdSdw
dxDx=0

EISd2w
dx2D

x=L

=Mu

(26)

Also, the in-span maximum bending momentMmax will be developed at the
location where:

dM
dx

50

and the maximum bending moment can be obtained by:

Mmax5EI
d2w
dx2 5(2EIksinkxp1Cdcoskxp)q01

sinkxp

k
N01

pb

k3L
(kxp2sinkxp) (27)

Fig. 8. Single corrugation under the combined load of lateral pressure and axial compression when a
plastic hinge is formed at the bottom end.
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Fig. 9. Assumed collapse hinge mechanism.

Increasepb until Mmax reachesMu, then there will be two plastic hinges formed at
the middle and the bottom end of the beam respectively, see Fig. 9. Theoretically,
in this case, a collapse hinge mechanism is not formed, the beam still has some
carrying capability. But according to the result of the finite element analysis by
Konish [5], the corrugated bulkhead can be considered to collapse after two plastic
hinges are formed. So, in this paper, we will not do any further analysis and consider
this case to be the ultimate limit state. The presentpb is considered the ultimate
lateral pressure.

3.2. CB,CBC

In this case,Mmax is larger thanMb and it represents the bending moment at the
middle of the beam which first reaches the ultimate bending moment of the beam
cross section and the plastic hinge will first be formed at the bottom end, see Fig. 10.

To obtain the expression of the bending moment at the bottom end, the beam is
separated into two parts, the end conditions of the left part are:

w(0)=0

EISd2w
dx2D

x=0

=CdSdw
dxDx=0

EISd2w
dx2D

x=xp

=−Mu

and the end conditions of the right end are:

Fig. 10. Single corrugation under the combined load of lateral pressure and axial compression when a
plastic hinge is formed at the middle of the beam.
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w(L)=0

EISd2w
dx2D

x=xp

=−Mu

EISd2w
dx2D

x=L

=−Cb·Sdw
dxDx=L

The following continuity conditions at the plastic hinge location ofx=xp should also
be considered:

(Nx=xp)left=−(Nx=xp)right

(wx=xp)left=(wx=xp)right

where (Nx=xp)left, 2(Nx=xp)right are the shearing forces calculated by the formulas of
the left part and right part of the beam.

Then, the bending moment at the bottom end,Mb can be obtained by:

Mb5EI
d2w
dx2 (x5L)

First, we also assume that a plastic hinge is formed at the bottom end whenMb

reaches ultimate bending momentMu and the lateral pressure then will be the ultimate
lateral pressure. Fig. 11 shows the effect ofCB on the ultimate lateral pressure thus
defined and from this figure, it can be seen that as long as the elastically fixed rigidity

Fig. 11. Ultimate lateral pressure varying with critical constrain constant at the bottom end.
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Fig. 12. Distribution of bending moment along the length of the beam under different lateral pressure
whenCB is less thanCBC.

CB is larger than zero, even it is very small, the ultimate lateral pressure will be the
same as the one under the condition thatCB=`, this is apparently unreasonable.

Next, let us compare the bending moment distribution underCB,CBC (Fig. 12)
with that underCB.CBC (Fig. 13). In these two figures,pb0 is the lateral pressure
under which the first plastic hinge is formed,pbu is the lateral pressure under which
two plastic hinges are formed,pbm is the lateral pressure betweenpb0 andpbu.

From Fig. 12, we can see that when the first plastic hinge is formed at the middle
of the corrugation beam, quite a large part of the beam will be subjected to high
bending moment. As the applied lateral pressure increases, the increase of the bend-
ing moment at the bottom end is not very quick. Therefore, for a pressure level

Fig. 13. Distribution of bending moment along the length of the beam under different lateral pressure
whenCB is larger thanCBC.
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pb0,pb,pbu, the yielding zone in the middle location is actually quite large. How-
ever, due to the strict end conditions, this cannot be reflected. Therefore, the validity
of the solution for the bending moment distribution underCB,CBC and pb.pb0 is
questioned. In Fig. 13, the bending moment at the bottom end (yielding zone) will
not spread and therefore, this bending moment is reasonable. Because of this reason,
it is assumed in this paper that whenCB,CBC, the ultimate limit state is reached
when one plastic hinge is formed at the middle of the corrugation.

4. Validation of the formula

4.1. Compared with the theoretical results of Paik et al. [3,4]

First, the formulas in this paper can be considered as an extension of those of
Paik et al. [3,4]. WhenT=0, they should be degenerated into those of Paik et al.
Fig. 14 shows the effect of axial force on the ultimate lateral pressure under the end
condition ofCB=`, CD=0. The dimensions of model 90-1 and other models are given
in Table 1.

According to the formulas derived by Paik et al. [4], in the case ofT=0, the
ultimate lateral pressure at the bottom end can be estimated by:

Pbu5
12L−6xp

2L2xp−3Lxp+x3
p
·Mu50.104 MPa (28)

From Fig. 14, we can see that the results calculated by the formulas of this paper

Fig. 14. Effect of axial compression on the ultimate lateral pressure.
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can be successfully degenerated into that of Paik et al. and therefore these formulas
are validated in one aspect.

4.2. Comparison with FEA results of Konish et al. [5]

Next, we will compare our results with the FEA results of Konish et al.,[5] Konish
et al. have used half-pitch corrugation model under simply supported end conditions.
The lateral force is uniformly distributed. From Table 2, we can see that the results
of our formulas are very close to those of Konish et al., and the formulas of this
paper are simpler in the sense that no correction is needed for the influence of gusset
plates and shedder plates.

4.3. Comparison with our own FEA results [6]

Since there are little previous results which have taken into account the influence
of axial compression, to make further validation of the formulas of this paper, we
use half pitch model 90-1 whose dimensions are shown in Table 1 to build FEM
models. The end condition is one end simply supported and the other end clamped.
Lateral pressure is uniformly distributed and an axial compressive force exists. The
FEA is carried out using MSC/NASTRAN and the displacement of the FE mesh
model at the ultimate state is shown in Fig. 15.

The results are shown in Table 3. It can be found that askL increases the difference
between FEA and the proposed formulas increases. This indicates that the present
model is more applicable for the small axial load cases. In a preliminary study for
a ship of 71 000 DWT bulk carrier [6], the maximum axial compressionkL induced
by the maximum global shearing forces is 0.315. Therefore, for practical application
the proposed formulas are credible and can be used as a tool to calculate the ultimate
strength of corrugated bulkheads on the bulk carriers.

5. Influence of axial compression and fixed rigidity on the ultimate strength
of corrugated bulkheads

5.1. Influence of axial compression

From Fig. 14, we can see that the apparent influence of axial compression on the
ultimate strength, especially whenkL is larger than 0.4, the value of ultimate lateral
pressure decreases rapidly with the increase ofkL. By the analysis of the axial com-
pression induced by shearing force of the corrugated bulkhead of one 71 000 dwt
bulk carrier [6], we found that the value ofkL is about 0.3, at this value the ultimate
lateral pressure is about 97% of the one under no influence of axial compression.
So, whether we should take into account the influence of axial compression is
dependant on the specific condition. To make a decision, we may carry out some
analysis using the method of this paper.

Besides these, the value of axial compression also has a certain influence on the
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Fig. 15. Displacement of half-pitch model at ultimate limit state.

Table 3
Comparison with FEA

kL Ultimate lateral pressure (kg/cm2)

FEA Proposed formula

0.49 0.46 0.462
0.574 0.42 0.431
0.63 0.38 0.399
0.699 0.33 0.353

location of the plastic hinge and the critical elastically fixed rigidity. These will be
discussed later in this paper.

5.2. Influence of elastically fixed rigidity of bottom end

5.2.1. Critical elastically fixed rigidity
From the derivation process above, we can see that the definition of critical elasti-

cally fixed rigidity is very important. When the value of critical elastically fixed
rigidity is known, we can presume the mode of plastic mechanism of the corrugation
beam, and thereby predict the ultimate lateral pressure. Fig. 16 shows the curve of
critical elastically fixed rigidity versus the axial compression, and by curve fitting
technique, the general relationship between critical elastically fixed rigidity and the
axial compression is obtained:

CBC54.997220.01116(kL)10.14195(kL)2 (29)
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Fig. 16. Effect ofkL on the critical elastically fixed rigidityCBC.

The equation above fits well with the theoretical results and from this equation we
can see that the value ofCBC is approximately 5.

5.2.2. The location of plastic hinge
To carry out further analyses of the influence of axial compression and the elasti-

cally fixed rigidity on the location of the in-span plastic hinge, we use the dimensions
of model 90-1, varying the value ofkL andCB to calculate the location of in-span
plastic hinge under the end condition:CD=0. Fig. 17 shows that the location of plastic
hinge moves farther from the bottom end whenCB increases. It can also be seen
that this will also happen when the value of axial compression increases, but the
effect is so small that it can be ignored.

Fig. 17. The location of plastic hinge varying with the value of elastically fixed rigidity of the bottom
end under different axial compressions.
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5.2.3. Influence on the ultimate lateral pressure
From Fig. 17, we can see that the minimum value of lateral pressure is developed

whenCD=CB=0, i.e. both ends are simply supported. Then it will increase withCB

until CB reaches the critical value. Thereafter, it will remain almost constant.

5.3. Influence of the elastically fixed rigidity of the upper end

The above discussions are all under the assumption that the beam is simply sup-
ported at the upper end. In the following, the influence of the elastically fixed rigidity
of the upper end is studied. Fig. 18 shows the curve of ultimate lateral pressure
versusCD whenkL=0.5, CB=106.

Since the value ofCD is much less thanCB, in Fig. 19, we confine it between 0
and 4. From Fig. 19, we can see that the value ofpbu also increases withCD which
can be easily explained, but the extent of change is not as big as that of Fig. 18.
The influence of the elastically fixed rigidity at the upper end may also be taken
into account for accurate analysis.

6. Concluding remarks

Due to the occurrence of several bulk carrier losses during the last decade, the
safety assessment of bulk carrier corrugated bulkheads has been of interest, and most
recently, bulk carrier corrugated bulkhead requirements have been enhanced by IMO
and IACS.

The enhanced requirements are aimed at predicting the ultimate strength of corru-
gated bulkheads subject to accidental flooding in a relatively simple and reasonably
accurate manner. In fact, the adjoining structures like the deck, the upper and bottom

Fig. 18. Ultimate lateral pressure varying with the value of elastically fixed rigidity of the bottom end
under different axial compressions.
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Fig. 19. Ultimate lateral pressure varying with the value of elastically fixed rigidity of the upper end
under different axial compressions.

stool and also the double bottom may affect the ultimate strength of the corrugated
bulkhead, which makes the actual behavior in particular cases could differ from the
predictions obtained from design formulae based on idealized end condition [4].
Besides, the axial compression induced by vertical shear forces may also reduce the
ultimate strength of the corrugated bulkheads. Although these two factors have been
mentioned in some literatures [3], they are not thoroughly investigated.

In this paper, a simplified formula to calculate the ultimate moment of the single
corrugation beam is first derived using the simple approach of Paik et al. [3], then
the formulas to predict corresponding ultimate lateral pressure are also derived using
the elasto–plastic theory. These formulas are validated by comparing their results
with those of Paik’s formulas and Konish’s FEA. Finally, the influence of axial
compression and end elastically fixed rigidity on the ultimate strength is studied.

From the researches carried out in this paper, the following conclusions can be
drawn:

O The axial compression induced by shearing force has some effect on the ultimate
strength of corrugated bulkheads which depends on ship style and load case. This
paper has provided the means to estimate this effect.

O The critical value of end elastically fixed rigidity is approximately 5, its accurate
value can be obtained by using Eq. (29) in this paper.

O When the elastically fixed rigidity at the bottom end is less than the critical value,
only one plastic hinge can be formed in the corrugation beam when it reaches
the ultimate limit state; when the elastically fixed rigidity at the bottom end is
larger than the critical value, two plastic hinges will be formed at the middle and
bottom end of the corrugation beam respectively when it reaches the ultimate
limit state.

O When the elastically fixed rigidity at the bottom is larger than the critical value,
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the ultimate lateral pressure becomes almost constant and can be estimated by
using one end simply supported and clamped end condition.

O The elastically fixed rigidity at the upper end of the corrugation beam also has
some influence on the ultimate strength of the corrugation bulkheads which is
relatively small compared with that of the bottom end.
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